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Abstract

Sub-optimal performance in computer programming practicals may be associated with a lack of contemporaneous
formative feedback in the laboratory session. Although automated testing is a key feature of industrial software
development, its routine use in computer programming education remains uncommon. Additionally, written or
verbal specifications of desired functionality can lack precision, leading to uncertainty amongst students regarding
what is expected in a particular exercise.  Literature reports of automated testing centre mainly on student-written
tests as an end product and on summative grading systems utilising automated testing after assignment
submission.

 

This study therefore examines the effect of adopting a signature pedagogy (Shulman, 2005) of test-driven
development that utilizes formative automated testing in applied programming laboratories. Laboratory sessions
were re-designed to incorporate automated formative feedback that combined lecturer-supplied test cases with
industry-standard software testing frameworks. The approach was informed by best practices in formative feedback
(Nicol and MacFarlane-Dick, 2006). Furthermore, technology choices minimised student effort whilst remaining
tolerant of student-specific technology choices.  Tools for staff use were additionally developed to tabulate and
aggregate test results to guide subsequent sessions.

 

A mixed-method evaluation combines qualitative learner views and practitioner reflections, supported by ongoing
test performance collection.  The approach discussed is shown to provide improved certainty of completion and
correctness.  Student feedback particularly noted the easy penalty-free access to formative feedback within familiar
programming environments.  Utilization of industry-standard tools and a common project layout promoted and
focused student discussion with peers and staff.  It is concluded that a test-driven signature pedagogy utilizing
lecturer-composed formative test cases could improve outcomes in advanced applied programming courses.
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1. Introduction

Computer programming, commonly called coding, forms a key component of contemporary

computing education. Coding is the process by which a human expresses instructions in a

form that a computer can carry out, or execute.  These instructions are written in one of a

number of programming languages, often Java and Python at introductory undergraduate

level (Mason, 2012) A piece of software known as a compiler converts the human-readable

instructions into machine-language instructions that the computer can execute.

 

Practical classes, designed primarily to develop fundamental and applied coding skills, are a

key delivery method used in computing courses (Azemi, 1995).  Within the Irish Institutes of

Technology, it is also common for academic staff to deliver practical classes without the aid of

teaching assistants (Lalor, 2010).  A key benefit of the lab environment in general is the

immediate feedback that can be delivered by staff making a quick visual inspection of the work

in progress.  However, when teaching computer programming, visual code reviews are of

more limited use, because a given piece of code can take different paths when the computer

actually executes it.  Against this backdrop, there can be insufficient time for a lecturer to

critique code manually and in sufficient depth, particulary when students experience

difficulties.

 

Over several years at Dundalk Institute of Technology, the author observed a number of

undesired emergent symptoms when delivering modules that involved programming. Many

students were failing to complete the exercises in full before leaving the laboratory.  They then

regularly arrived to subsequent sessions without working code from previous sessions.  There

was little evidence that students checked whether their code could be compiled, that is,

understood by the computer, until they had it written in full.  Similarly, they did not routinely

test that their written programs performed correctly when executed.  When incremental

development did occur, previously working code often had faults, or bugs, introduced as

students worked on additional functionality.  Specifications supplied to students were often

vague, causing diversion of attention towards discretionary extras, such as user interface,

whilst core functionality remained weak.  For many students, the ultimate arbiter of success

seemed to be whether the code compiled without error, and ran without crashing, rather than

its functional correctness.
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This final observation interestingly suggests a possible improvement to the learning

environment for programming. That is, the author observed that students seemed to react

positively to simple binary feedback denoting success or failure.  Furthermore, positive

engagement with repeatable, automated, penalty-free automated feedback has been

previously reported (Nicol, 2007).   Could specifications for programming tasks be encoded in

such a way that the student can check their work continuously as they progress, without

lecturer intervention?  Within the Irish Institutes of Technology, in particular, the capacity

issues and resulting constraints (Lalor, 2010) are unlikely to change in the near future (Clarke,

2015).  Therefore, any means to increase in-lab feedback needs to be workload negative or at

least neutral for it to be sustainable (Brown, 2004), which effectively mandates automation

and self-administration.

 

Up until two decades ago, similar problems regarding correctness were mirrored in the

software industry.  The so-called waterfall development model (Royce,1970) where testing is a

separate process undertaken once coding is complete, had similar issues of mismatch

between delivered code and requirements (Kennedy,1998) Responding to these deficiencies,

agile development practices (Beck, 2001, Beck, 2004, Humble, 2011) have gained in

popularity. These methodologies heavily leverage ongoing user feedback whilst the software

is being written (Beck, 1999).  Automated testing tools are now central to the development

process to provide feedback to coders, not just to avoid bugs being introduced when

additional functionality is added, but more interestingly to encode required functionality prior to

development, (Beck, 2001).  Software tools are now available for almost all commonly used

programming languages to simplify the process of testing, such as the JUnit framework for

Java  (Tahchiev et al., 2011).

Despite its clear industrial benefits, the use of automated testing as a feedback tool has not

universally spread to the classroom.  Reported experiences of automated test usage in the

classroom setting (Devedžić and Milenković,  2011, Carlson, 2008, Wick, 2005, Olan, 2003,

Girard and Wellington, 2006) do mirror the perceived positive impact by industrial user (Beck,

2001, Beck,1999, Beck, 2004).  However, most case studies examine introductory

programming labs, and reports of routine automated testing in advanced applied programming

modules, such as those dealing with web frameworks, parallel programming or database

interaction, is almost non-existent.  There remains a space to add to the body knowledge

specifically looking at modules where programming is used rather than taught for its own sake.

From the lecturer's perspective, laboratory teaching could be greatly enhanced by being able

to monitor completion and to identify areas causing difficulties for the student group. 
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The aim of this study was, therefore, to determine the effect on student learning of adopting

test-driven development automated testing to deliver formative feedback within applied

programming laboratories.

Contextual considerations guided a number of a-priori assumptions. The student cohort

available for this study were Year 3 students on the BSc (Hons) Computing programme who

chose the Web Frameworks elective module. Reasonable competency of programming using

the Java language, which is introduced in the first two years of the programme, could

therefore be assumed.  Many students bring their own laptops to college, and there is

substantial diversity of operating systems and development environments used for Java

programming by learners.  As this work was undertaken as part of the author's studies

towards the Master of Arts in Learning and Teaching, the study was time-bound to one

semester.  The remainder of the paper is structured as follows,  Section 2 reviews literature

relating to feedback, both traditional and automated, and briefly examines its use within

computer programming.

Section 3 describes the development and implementation of a classroom intervention to

deliver formative automated feedback on programming work.  Section 4 evaluates the

intervention's effect, describing a qualitative-leaning mixed-mode study with quantitative

support, where its influence on student achievement and solicitation of feedback in laboratory

sessions are investigated.

2. Literature Review

 2.1      Formative feedback

 

The primary prerequisite to any educational endeavour is a well-designed set of desired

learning outcomes (Biggs,2003). Attainment of the desired learning outcomes is ultimately

summatively tested by tasks satisfying the varied criteria of validity (Brown, 2004).  However,

successful self-regulation of a student's own learning essentially depends on formative

feedback being returned and acted upon (Nicol,2006). Gibbs (2010) directly identifies the

provision of feedback as a distinct skill that a lecturer must develop.  McCabe and O’Connor

(2013) similarly charge the lecturer to regularly deliver feedback of sufficient quality and

quantity to enable self-regulation of learning. 

The constitution of good feedback eludes simple definition (Nicol and MacFarlane-Dick, 2006),

however numerous works offer opinions on its necessary attributes. The seminal piece by

Nicol (2006), concisely identifies seven principles necessary for the provision of high-quality

feedback, justifying each from theory.  Chickering (1987)  places an aligned practical lens on
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good practices in undergraduate education.  These views are supported by Evans (2013), a

review that explores many aspects in greater depth and specificity.

However, Gibbs  (2004), asserts most succinctly the basic requirement that: “Sufficient

feedback is provided, both often enough and in enough detail''.

 

The essence of ideal feedback presents as a duplex dialogue between the learner and

teacher. Gibbs and Simpson (2004), note a general decline in learner-specific feedback, citing

the formative tutorial systems of Oxford and Cambridge as exemplars of good practice, where

face-to-face dialogue coalesces around regular written work.  As a two way process, the

feedback dialogue requires proactive learner effort, not just reactive or passive reception

(Nicol and MacFarlane-Dick, 2006). This requirement suggests an emotional dimension to

feedback, and the consequential need to empathize with learners' evoked emotional

responses to feedback (Dowden et al, 2013).  Gibbs and Simpson (2004) echoes this

concern, cautioning that feedback should concern attributes of the delivered work, not the

student delivering it.

 

Almost unanimously, the literature recognizes that much delivered feedback accompanies

summative assessments.  Accordingly, the primary concern of the student is recognized as

the achieved numerical grade (Cooper, 2000, Gibbs and Simpson, 2004). Indeed, Nicol and

MacFarlane-Dick, (2006), asserts that the very existence of a numerical score negatively

impacts on feedback efficacy. Higgins (2001) amplifies this criticism, arguing that the resultant

consumerist view favours surface rather than deep learning approaches. Yet, Nicol and

MacFarlane-Dick (2006), also states that feedback must help to close the gap between actual

and ideal performance.  Later work showed that multiple low-stakes summative assessments

provide a good formative effect (Nicol,2007)}, but advise pre-drafted feedback of sufficient

quality and a setting promoting further dialogue are provided if following this approach. More

generally, to positively impact learning, a numerical score must be accompanied by specific

diagnoses and actionable recommendations (Gibbs and Simpson, 2004).

 

Furthermore, an opportunity must be given for the feedback to be actively put to use, (Cooper,

2000, Gibbs and Simpson, 2004).  This can often take the form of penalty-free opportunities to

repeat (Nicol, 2007)}, particularly when automated electronic feedback is supplied.  Daku,

(2009), similarly reports positive outcomes from this approach in hardware-based practical

laboratories.  Finally, the initial “feed forward'' must specify basic expectations before work is

commenced (Chickering and Gamson,1987).
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Assuming that a dialogue is set up with a high-quality exchange of actionable information, how

often should it occur?  The literature unanimously agrees that feedback must be routine

(Brown,2004, Gibbs and Simpson, 2004) and delivered promptly following submission (Nicol,

2007, Chickering and Gamson,1987).  Brown ( 2004) asserts that the feedback must be

directly integral to the learning process.  Not only are education outcomes improved, but the

additional burden on academic staff can be kept to a minimum, which is a key consideration in

the constrained Irish third-level sector (Lalor, 2010).

 

From our brief examination, feedback provision must be interactive, provide actionable

recommendations, and be a routine continuous activity that improves objective performance.

 These ideals of feedback are not at all confined to the education space.  The software

industry leapfrogs the educational space here, as the value of rapid and high-quality feedback

within the software process was seized upon and incorporated into standard practice nearly

two decades ago.

 2.2      Industry perspective

 

By the late 1990's, many deficiencies of educational feedback practice were mirrored in

industrial settings.  Traditional software engineering followed a strict pipeline named the

``waterfall cycle'' almost 40 years ago (Royce,1970).  Superfically a logical choice, the well-

documented disadvantage of this approach is that no customer feedback is available until the

project is technically complete, by which time modifications are costly and time-consuming to

implement (Kennedy,1998). The person who wrote the code is not even responsible for

testing their code at the point of writing in some cases.

 

In 2001, a self-selected group of software developers coalesced to publish a contrarian view,

the so-called Agile Manifesto (Beck et al, 2001), which leveraged feedback to improve product

quality.

Instead of a waterfall cycle, short iterations culminating in demonstration of new functionality

to the customer ensured that feedback was received regularly and acted upon (Beck and

Andres, 2004, Gibbs and Simpson, 2004).  Even more radically, a customer or user

representative was seconded permanently to the development team, opening a rich and

continuous dialogue.
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Implementation of the Agile Manifesto's aspirations primarily fell upon new iterative process

methodologies,  aided by a number of specific working practices and technical interventions

(Beck and Andres, 2004).   Many complex and time-consuming manual processes were

neutered by a deep commitment to automation, succinctly put as a key maxim:  “If It Hurts, Do

It More Frequently, and Bring the Pain Forward” (Humble and Farely, 2011).  Perhaps the

most significant impact of the Agile Manifesto was on the process of testing.

 

Previously, testing was a manual, laborious and time-consuming endeavour performed once

all code was written.  An overriding preference for automated testing of code was espoused

by the agile methodology, so that the code could in essence test itself once written.  This

meant that testing could now take place as a regular and repeatable activity (Beck and

Andres, 2004), providing routine feedback.  More fundamentally, testing moved both

temporally and conceptually from its validation role following development to an integral

cyclical feedback component of writing code, coining the moniker of Test Driven Development

(TDD) as a key cornerstone of today's software industry (Beck, 2001). TDD inverts the role of

automated testing, placing it at the heart of a feedback-driven development workflow.  The key

change was that automated tests describing new functionality were written before the code to

implement that functionality (Beck, 2001).  Given a particular new functional requirement, tests

are written in a machine-readable format, which serve as an explicit checklist of functionality

that we use the computer to check has been completed.  A typical TDD workflow contains

three feedback loops.  Firstly, the developer or another team member writes a test from a

functional specification.  The first feedback loop is that the programmer verifies that this test

fails, since no production code has been written to satisfy it.  The minimum amount of

production code is then written to satisfy the test, which is run repeatedly by the programmer

to verify their work, forming the second feedback cycle Finally, once a working solution has

been arrived at, it may need a certain amount of refactoring, or internal reorganisation. The

same test that verified the new functionality ensures that no errors enter during refactoring,

forming the third feedback cycle.

 

Most programming languages have a defacto testing framework, such as JUnit for the Java

language (Tahchiev, 2011), that enables basic pieces of code to be tested.  More advanced

testing scenarios, such as simulating user interaction with graphical user interfaces or web

applications, can be scaffolded on to these frameworks.
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2.3       Classroom adoption
 

The documented disadvantages of waterfall development (Kennedy,1998) mirror problematic

experiences from educational programming laboratories.  (Shulman,2005), introduces the

concept of a signature pedagogy, where elements of professional practice are mirrored in the

learning methods employed in the classroom, such as the clinical round in medicine or the

debate in law. In software development, similarities exist between industry and the classroom. 

The lecturer parallels the customer or specifier role (Beck et al, 2001,  Beck and Andres,

2004),  setting requirements and being available during the lab session to clarify expectations

and offer coaching.  However, there is limited evidence of universal adoption of automated

testing in the classroom, despite its widespread industrial application. There is a confluence of

technical and educational literature around the potential benefits of formative automated

testing tools that provide penalty-free self-administered feedback during development work

(Nicol, 2006, Cooper,2000)  which suggests that their incorporation may further complete the

signature pedagogy of computer programming.  Both Christensen (2003) and Jones (2001)

suggest that automated testing of this nature should pervade computing education at

programme rather than module-level.  Desai et al (2008) catalogues a number of approaches

used to date, likening automated testing more to a programming technique than an

assessment method.

 

Automated testing has been reported in numerous guises within computing education as

Douce et al, 2005catalogues.  Multiple direct references to TDD practices within the classroom

exist, with Barriocanal et al (2002), one of the earliest accounts, providing an organizational

blueprint. Further reassurance is offered by Girard and Wellington (2006), and Wick (2005),

who report positive outcomes of a test-first approach at both introductory and more advanced

level modules. Desai et al, 2009, similarly offers sensible guidance for TDD in the class

setting, noting that some reordering of certain introductory topics benefit TDD, and crucially

also reports no significant increase in student workload as a result of this approach.

 

Edwards  (2003) crucially identifies three conditions for testing to have an effect on student's

overall learning, testing must be integral to the programming activity, frequent useful feedback

is required and the testing activity must be seen to have value. In practice, these three

conditions reflect the key principles of good feedback practice (Nicol, 2006).  Expanding on

this, (Edwards,2004), cites the introduction of automated testing as enabling a move “from

trial-and-error to reflection in action''. Successful regular use of automated testing promotes
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students to refactor, or clean up, their code once working (Carlson,2008).

 

TDD will unavoidably require specialist supporting software tools to be employed. It is

essential, however, that the tools used do not cognitively overload students (Reis and

Cartwright, 2004), because testing will then simply be neglected (Humble and Farely, 2011). 

Particular difficulties are unavoidable when testing work that involves graphical user interfaces

(Thornton et al,2008), and indeed simple keyboard-driven interactive programs (Proulx and

Rasala, 2004),  as Douce et al, (2005), acknowledge.

The literature includes numerous accounts of development in the area of centralized and later

web-based online summative grading systems that could test submitted code to varying

degrees (Hitchner,1999,  Spacco et al (2006), Edwards,2003, Higgins et al, 2005).  In this

vein, the Web-CAT system described by Edwards (2003), emphasized the combination of

instructor and learner-written automated tests.  For formative work, it would be preferable to

have testing tools that do not require time-consuming steps of submitting code to an online

service (Clarke et al, 2014).

 

The three mainstream Java Development environments (Eclipse, Netbeans and IntelliJ) all

provide support for running automated tests and viewing the results.  In addition, a number of

pedagogically focused Java development environments have been released, that support

testing to varying degrees, such as DrJava (Allen et al, 2002) and Java Programming

Laboratory (JPL) (Pullan et al, 2013).   Interestingly, JPL was designed to promote mastery of

certain threshold programming concepts through composition of a large number of small,

targeted pieces of code, and included a relatively painless testing and submission system. 

Whilst pedagogically focused development tools no doubt provide value, they are inescapably

contradictory to the idea that the signature pedagogy should be authentic to practice

(Shulman, 2005).  It could therefore be argued that for mid-level courses involving students

who are soon entering the workplace that pedagogy-specific tools should be eschewed in

favour of industrially utilized tools.

 

The innate feelings of students regarding TDD as a feedback method must also be

considered, since it should foster positive motivational beliefs (Nicol and MacFarlane-Dick,

2006), and be used in a way that is emotionally sensitive (Dowden et al, 2013). Analysis by

Janzen and Saiedian, (2007), found that positive experiences of automated testing in

educational settings led to continued usage.   Similarly, an account of broad introduction of

agile software development practices in an undergraduate course directly noted an excessive
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use of testing amongst student concerns Devedžić and Milenković, 2011).   In particular, the

critical analysis by Kollanus and Isomöttönen (2008), points to cognitive overloading when

applying TDD in its most orthodox form.

 

Whilst it is clear that various forms of test-driven development have been reported to be

successful, their use has been confined to introductory level courses, and often required non-

standard development software.  There is scope for further examination of the effects of

adopting TDD within the signature pedagogy used in more applied programming settings,

such as signal processing or web development, whilst retaining its automated nature

promoting frequent usage.

1.  Intervention Methodology

 

Test-driven development was adopted as a signature pedagogy (Shulman, 2005) for the Web

Frameworks module, noting the need for authenticity to industrial practice.  This extends the

existing natural parallels between the lab environment and agile development methodologies,

namely short iterations and customer-presence.  Given that the identified problem was one of

feedback, the seminal seven principles of quality feedback proposed by Nicol and

MacFarlane-Dick, (2006), were used to guide the intervention's design process.  Secondly, the

constraint was imposed that any technologies adopted must be industry vernacular (Shulman,

2005).    Additionally, the diverse choices of operating systems (Windows, Mac, GNU/Linux)

and integrated development environments (Netbeans, Eclipse, IntelliJ) used by students to

write and run Java code must continue to be respected.  For these reasons, the approach

taken involved minimal technological intervention and avoided classroom-specific tools

3.1 Laboratory exercise design

Each lab session began with a statement of the learning goals for the session to align the

laboratory activity (Biggs, 2003), following a brief retrospective of the previous session. 

Required theory was presented, often including demonstration of finished-product or

intermediate functionality.  Students then completed a lab exercise where the specifications

were supplied in both natural language and as automated tests.  They could use the

automated tests supplied to gain immediate feedback during the session on how their code

performed in response to various valid and erroneous inputs.
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Feedback must first “clarify what good performance is” (Nicol and MacFarlane-Dick, 2006).

Noting the observation by (Sadler,1989) that requirements can be ambiguous and poorly

articulated, the first design decision is that all principal functional requirements will be

articulated in automated tests. Those automated tests will be supplied by the lecturer in

addition to the written exercise brief. This directly mirrors industrial practice (Beck and Andres,

2004, Beck,2001), and previous similar interventions (Wick et al, 2005).Test cases will not

only exercise “positive” functionality but will check how code deals with erroneous or

ambiguous inputs (Olan,2003).  In contrast to some previously reported studies (Edwards,

2003), the tests are in no way hidden from students, who can review the test's Java code in

the normal way.  A typical test case for code that produces factorials is presented in Figure 2.
_________________________________________________________________________________________

package  ie.dkit.webframeworks.unittestinglab;

import org.junit.After;

import static org.junit.Assert.assertEquals; import org.junit.Before;

import org.junit.Test;

public class FactorialCalculatorTest {
FactorialCalculator calculator;
@Before

public void setup() {

calculator = new FactorialCalculator();

}
@After

public void tearDown() { calculator = null;

}

// test a "normal" usage case

@Test

public void computesPositiveFactorial() throws Exception { assertEquals(6,
calculator.factorial(3));

}
// test an edge case

@Test

public void computesFactorialZero() throws Exception { assertEquals(1,
calculator.factorial(0));

}
// test that an erroneous input is caught and rejected

@Test(expected=ArithmeticException.class)

public void throwsExceptionOnNegativeFactorial() { calculator.factorial(-1);

}

}

Figure 2: Sample test case
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The second principle requires good feedback to promote self assessment and reflection on

the learner's part (Nicol and MacFarlane-Dick, 2006).  This implies that the suite of tests be

available to learners and easy to run on a regular basis, echoing the recommendation that

feedback be routine (Brown, 2004, Gibbs and Simpson, 2004), and delivered  promptly (Nicol,

2007).    Therefore, students received objective progress measure by running tests regularly

during the practical session using the testing features of their standard development

environment.  Providing the tests and feedback using the standard development environment

avoided additional work on the part of the student, ensuring that they would regularly run the

tests while working, in contrast to previously reported automatic grading solutions where

students submitted code to a separate online service (Edwards,2003).  

 

Nicol and MacFarlane-Dick’s, (2006) third principle requires feedback to deliver information of

sufficient quality to learners.  By adopting the standard JUnit test framework, the industrially-

employed Integrated Development Environments' abilities to show test results in a colour-

coded easy-to-understand pass/fail format are leveraged fully.  Furthermore, each test

examined a single aspect of functionality (Tahchiev,2011),  allowing easy identification of a

failing test's possible cause.  A failing test therefore directly lead to so-called “reflection-in-

action” (Edwards,2004).  

 

Fourthly, and critically, feedback should encourage a learner to enter dialogue with their peers

and instructors around learning (Nicol and MacFarlane-Dick, 2006).  To faciliate focused

discussion, tests were individually well-named and contextualised  (Gibbs and Simpson, ,

2004, Dowden et al, 2013). 

Furthermore, each student started from a common project template, as with the previously

described JPL system (Pullan et al, 2013),  providing an identical context and layout enabling

discussion without having to review a peer's setup.

 

In this implementation, a common project template was distributed using the industry-standard

Git version control system, giving the same benefits.  Additionally, this project template used

the industry-standard Maven Java project management tool (Miller et al, 2010), that directly

and transparently integrates with all main Java development environments, thus ensuring that

students did not need to install or configure test frameworks manually.
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Fifth, feedback must also bolster a learner's motivational beliefs, and their self-esteem ((Nicol

and MacFarlane-Dick, 2006).   With the approach taken, a student ideally leaves the

classroom knowing that they have passed a given number of tests, and ideally that no tests

remain as failing.  Test names and assertion failure messages were framed positively

(Dowden et al, 2013).   By using the Git version control system and the Maven project builder

system, difficulties relating to setting up the test environment were avoided, thus avoiding any

negative perceptions on the part of the student.

 

Sixth, feedback must facilitate closing the gap between actual and desired performance 

((Nicol and MacFarlane-Dick, 2006).  Tests were therefore written with sufficient granularity

and hints in comments to allow students to meaningfully focus effort on failing tests (Gibbs

and Simpson, 2004, Cooper, 2000).

The seventh and final principle is concerned with feedback of information to the teacher and is

dealt with separately in Section 3.2.

 

Undeniably, the use of automated testing introduces new and unfamiliar software tools and

attendant technical challenges (Kollanus and Isomöttönen,  2008).  Before starting the lab

series, a practical tutorial session on automated testing was provided, to the extent that it was

used in the module.  This included how the JUnit system deployed worked (Tahchiev), and

why we were using it from a pedagogical perspective (Wick et al, 2005).  The software

industry context (Beck,2001) was explained as the rationale for choosing this signature

pedagogy (Shulman,2005).   In particular, the ability for testing to clarify expectations and help

close the gap  ((Nicol and MacFarlane-Dick, 2006)  was discussed.   An integrated lab

exercise gave students the opportunity to set up the test framework for themselves and to

experience using it on a functionally-trivial example.

3.2       Performance analysis

The teacher's input to the feedback process is heavily dependent on the 7th principle of good

feedback practice, namely the availability of information that shapes teaching ((Nicol and

MacFarlane-Dick, 2006).    Looked at more closely, principles 4 and 6 depend on this if the

teacher is going to have any useful role in the process.

In-class participation in the module accounted for 20% of the grade.  For laboratory work, the

participation grade was assigned for the submission of the test report files to the relevant

Assignment on Moodle.  The approach taken was similar to (Pullan et al, 2013),  in replacing

manual reporting (Clarke et al, 2014) with semi-automated reporting that required little student

effort.
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Each time that a learner runs the tests, JUnit produces a report file, which is in the XML

machine-readable structured data format. This report lists the specific tests passed and failed,

and is easy to analyse programatically. 

The reports were downloaded in bulk from Moodle immediately after each lab session.

Custom scripting to analyse these files was developed by the author using Python with the

Pandas data analysis library (McKinney,2010). Output for a simulated group of report files is

presented in Figure 3.
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These reports were used to inform in-class activities and provide targeted assistance, in a

face-to-face analogue of the approach that (Pullan, 2013) suggests.  Additionally, the following

summary statistics were generated for each lab exercise:

Submission rate -- the proportion of students who attempted the lab, demonstrated by
making a submission at or before the end of the lab.  This measures basic
engagement.

Mean pass rate -- the mean of the percentage of tests passing for all students who
submitted data for the particular lab exercise.  This measures the overall attainment of
the learning goals.

All pass -- the percentage of students who achieved all tests passing during the
laboratory session.

 

2. Evaluation Methodology

The effect of adopting TDD as a signature pedagogy on learning was evaluated primarily in a

qualitative fashion informed in part by quantitative performance data.  The main summative

qualitative data collection tools for consideration here include interviews, focus groups and

surveys  (Cohen et al ,2007).   Surveys were discounted immediately due to concerns over the

small sample size.  Whilst personal interviews have the potential for a rich dialogue between

the researcher and individual participant, they have the potential to become intrusive and to

present scheduling difficulties (Cohen et al ,2007).

 

The focus group, by its nature, removes the personal spotlight from the individual participant,

and crucially allows group discussions to develop (Cohen et al, 2007, McLafferty,2004).  For

these reasons, the focus group was selected as the primary qualitative input of the learner

experience. Focus groups sessions were scheduled prior to the end of term, recognising the

possible impact of competing personal commitments on turnout (McLafferty,2004).

 

Ethical protections required close consideration given that participants were also students

taking the module for credit.  Institutional ethical policies were fully complied with.  Activities

were appropriately sequenced to ensure direct participant input occurred only after a

significant proportion of the available grade had been returned Cohen et al, 2007). At the

beginning of the module, students were fully informed on the relation of the research activity to

the module delivery.  They were free to contact the author or other named individuals within

the institution if they had any concerns.
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2.1  Focus group

 

Design and conduct of the focus group sessions was closely informed by Krueger (2002)

McLafferty (2004) and Kidd (2000).   Although both Krueger (2002,) Cohen (2007) suggest

more than one group, it is felt here that since the sample size is small and there is a priori

commonality amongst the participants that a single group will suffice. 

 

The session was time bound to a strict maximum of one hour.  Light refreshments were

provided at the beginning of the session to create a warm and relaxing atmosphere

(McLafferty,2004).  The room was chosen and arranged to promote discussion, utilizing

circular seating (Krueger,2002). Questions were designed to stimulate discussion and allow

additional probing, avoiding serendipitous dead ends (Krueger,2002).  Appendix A provides

the adopted question outline.

 

Audio recording was used to capture the output of the focus group whilst allowing free-flowing

discussion.  The faciltator additionally kept contemporaneous notes (Krueger,2002). 

 

Particular ethical safeguards were employed regarding the running of focus groups. Students

had already received 50% of the possible marks prior to the focus group session. An

information session was held that refreshed the overall study aims and summarised the

research progress to date.  An invitation was issued to participate in a focus group. Full details

on the areas to be covered and session conduct were provided. Learners received hardcopy

information sheets and participant consent forms to take home and peruse at their leisure, in

compliance with the institutional ethics policies. Participants were free to withdraw from the

focus group at any time before or during the session without giving a reason, and were

reminded of this in the information session and on the day.  Additionally, students were

reminded that they could contact the researcher or other named individuals at any time for

clarification or to express concerns.

 

Due to conflicting commitments on the scheduled day, the first focus group attracted a single

participant, who expressed a wish to proceed in any event, it is separately reported under

Section 5.2  as an in-depth interview. A number of potential participants who were unable to

make the first focus group made contact with the facilitator and a second session was held,

which is is reported under Section 5.1.   Analyses were conducted separately for both
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sessions, with commonalities and differences identified in the discussion.

 

After 100% of module marks had been assigned to students, the facilitator released notes and

audio recordings of both sessions to the researcher.  The audio recordings were

professionally transcribed and the transcriptions stored securely along with the digital audio

files. Initial review of transcripts was carried out, supported by careful review of the original

audio, including the correction of some programming-specific terms.  

 

Kidd and Parshall (2000) notes the lack of specific standard analysis techniques for focus

group data, although a number of catalogued qualitative analysis methods would initially

appear applicable (Cohen et al, 2007).  Thematic analysis (Braun and Clarke, 2006) was

selected as the primary formal qualitative analysis tool, noting its easy application and

summary abilities.  Additionally, its capability to identify unexpected outcomes and to inform

ongoing practice by easy generation of recommendations were noted.  Iterative review of the

transcripts facilitated distillation of the discussion to a small number of themes and sub-

themes.  The process was inductive, rather than theoretical, seeking to identify emergent

changes to learning rather than answers to a specific question (Braun and Clarke,2006).

 Quotes were used on occasion to illustrate specific indicative views.

 

2.2    Practitioner reflection

 

To provide a secondary aspect, the researcher maintained a longitudinal reflective account

during the course of the module delivery, noting the reported internalised personal benefits to

the teacher and researcher of journalling their progress (Ortlipp,2008, Borg,2001).  Much of

the advice regarding observations given by (Cohen, 2007) can be equally applied to the

keeping of a reflective diary, particularly around framing the structure of each entry.  These

reflections focused specifically on how the adoption of test-driven development appeared to

influence learning.  No student names or other identifying information were placed in any

reflective accounts.  The reflective diary was held in secure electronic storage.

2.3 Lab performance tracking 

Lab performance data was collected from students in the form of the JUnit report files in XML

format via Moodle and were turned in at the conclusion of each lab session.  Quantitative data

reporting is purely in aggregated for, and used to further illustrate some key points identified
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from the qualitative sources. Specific individual consent was not required to utilize this data

since it was normally collected in the course of delivering this module and no individual

tracking of students was performed. Following conclusion of the module, files for analysis

presented here were programatically stripped of any possible identifying information, such as

login name and home directory path. 

3. Findings

3.1 Focus group findings

 

The focus group session attracted five participants, and lasted approximately 40 minutes. 

Subsequent thematic analysis identified three primary themes, unambiguous clarification of

completion, facilitation of discussion and the need for justification.

 

The primary theme identified was that of certainty of completion.  Students reported that the

automated tests directly clarified whether the code had the desired result.  However,

participants also felt that it gave them freedom of interpretation by checking that final answer

was correct.  The use of testing gave a definite meaning to ``done'', avoiding doubt as to

whether something was working.

 

Participants reported a changed mental attitude to lab work, where the immediate goal was

now to pass the provided tests, sequentially passing each one rather than becoming

paralysed by totality of task, with one participant noting to “Look at the green bar going up”

referring to the visual onscreen indication of the each test sequentially passing.  Students

reported running the tests regularly, particularly after a change was made.  This certainty of

completion extended to the lab exercise as a complete unit. Although designed for in-class

usage, the utility of the automated tests were mentioned for work finished at home also. 

Participants appeared to be positive towards the idea of submitting test report files for a small

amount of credit.

 

The utility of unit testing appeared to extend out of the lab intervention and into summative

assessments, where unit tests were provided in one case.  Students expressed satisfaction

with their provision, as they felt that they could make informed predictions about completion

time and reasonably self-assess their own progress:
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 it was really good to know where you stood in the project throughout, like oh I got 50%
working, that's a good chunk of my marks, I can now get the rest of them.  I can now
work on the other files which are the rest of the tests instead of working on one file
over and over

 

Additionally, they reported that in many cases, the unit tests provided much greater clarity

than the narrative descriptions in the assignment briefs, one learner eloquently noted that 

“reading the JUnit was far easier than mulling through the English of the brief.''

 

There appeared to be reasonably satisfaction with the amount and granularity of tests,

although some participants expressed a preference for a small number of more challenging

tests for those who finish early.   Recognition that passing a particular test did not necessarily

guarantee correctness was evident, with participants cogniscent of the effect of false passes.

It was also appreciated that the test suite included one or two low-bar tests that were easy to

pass.   Students noted a jump in test complexity when transitioning from desktop to client-

server programming exercises, suggesting more scaffolding may be required.

 

The second theme identified was the automated test as a facilitator of discussion with the

lecturer and with their peers.  The ability of the automated test to localise a problem for

discussion, by framing it around a specific failing test was directly voiced:  “instead of kind of

going, you know, I've a null pointer exception, you can kind of say I've a problem with such

and such a test.''  Participants identified the provision of identical starting files as a second

pillar to enable this discussion to occur, since it was no longer necessary for peers to

structurally familiarise themselves with each others' code.

 

The final and arguably most important theme was that of student disposition towards the

approach. Students reported previous brief exposure to automated testing for grading

assignments in other modules, but lacked motivation and experienced challenges with the

software tools employed:

 

kind of thrown at us an additional framework, we didn't have something like Maven to
integrate the tests for us automatically so even getting them running in the first place
was very, very difficult
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By contrast, the fact that the testing was directly supported by the Maven project builder for

Java was directly mentioned here, where tests are automatically discovered and executed

during the project building process.  More generally, participants mentioned on a number of

occasions the importance that running tests be easy and routine, and that  “buy in” must exist

for the process to be successful.

 

Further refinement identified consistency of the signature pedagogy as a key sub-theme,

through familiarity and ubiquity. The introduction of the tests at the beginning and consistency

of application throughout the module was greatly valued. One direct benefit identified by

participants was that of time-management, where  “a lot of times as well he would finish class

maybe a couple of minutes early as well and you would still have the better learning from it.” 

In fact, students reported missing the tests where they weren't provided, such as in the final

more open-ended assignment.

 

The sub-theme of an industrially relevant signature pedagogy emerged without direct

exploration. Usage of standard workplace tooling was positively identified by one student

visiting a prospective employer, who observed the use of the employed tooling.   Specific

mention was made of the need for adequate time to be set aside at the beginning of the

module for students to set up their development environments and verify that the test

framework was working.  Furthermore, a mental association is clearly evident among a

number of separate tools introduced in the module, the unit tests, the Maven project builder

and the Git source code control system.

 

3.2 In-depth interview

 

The first scheduled focus group sessions attracted only one participant, who expressed a

desire to the facilitator to go ahead with the session.   Following ethical guidelines, the same

protocol was followed as with the multi-participant focus group.  The session lasted

approximately 14 minutes.  The transcript was separately coded and separately analyzed for

emerging themes, independent of the multi-participant focus group that was previously

reported in Section 5.1
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The main identified theme was that of clarification of expectation.  The tests were said to be

helpful regarding staying within a reasonable timeframe, since they suggested where to start,

and the ultimate goal to be achieved, and in doing so avoided wasting time.

 

Definitely a whole lot easier because you sort of just had an idea of where to start and
where you wanted to get to so you weren't wasting time on just like writing a whole lot
of gibberish that won't work.

 

In particular, it emerged that they were able to provide rich information when something didn't
work:

 

 If it worked the test ... it may or may not have passed but it would come up on the list
of errors what was wrong and you could sort of go off that ... if you were just running it
and it would just break or something you just wouldn't have a clue where you were.

 

Regular use of the test suite was reported by the participant, and the number of tests provided

was said to be adequate.  In terms of quality, the supplied tests were judged to be sufficient.

 

The second identified theme was the need for learners to internalise the relevance of the

signature pedagogy.  Previously, the participant reported not really knowing what testing was

about.  In particular, they reported a change in their own view on unit testing as a result of this

experience, noting that:  “I thought it was just a load of rubbish last year because I didn't really

have any time for it really.''  However, asked if they would continue to write their own unit

tests, as opposed to using supplied tests as in this module, they felt unsure.  Yet, a desire was

expressed to use them in future employment.

 

Furthermore, the provision of the tests encouraged compliance with naming guidelines for files

and other program units.  It was interesting in this regard that it was mentioned that at no

stage was their any attempt to “cheat'' on participant's behalf by changing the tests. 

 

Asked if the approach of using unit tests was a good idea, it was recommended that this

method be continued.  A preference for tests to be supplied rather than having to write them

was expressed.  In particular, the value of lecturer-written tests was expressed in the

recommendation: “Definitely don't just throw your students into doing JUnit.  I'd definitely go

for the approach of giving out JUnit tests and having to pass them.''  As previously noted,

reliance was evident on the automated tests rather than the narrative descriptions of the

assignment brief.
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3.3  Practitioner experience

 

Practitioner experience was recorded by the researcher during the module at varying intervals

throughout the semester.  Following initial unfamiliarity with the use of automated tests to

assist coding effort, their effect in the lab seemed overwhelmingly positive.  Assisting

individual students with difficulties became a less time-intensive and more targeted process,

since failing tests could in most cases isolate particular portions of code causing problems. 

Most students appeared to attempt to solve a problem themselves, solicit peer consultation

and only then ask the lecturer for assistance.  Having an overview of test performance

available when circulating throughout the room was helpful to gauge ongoing group progress.

 

The automated tests were also felt to provide much richer information to the lecturer than

previously available.  The grade was simply awarded for their submission, which limited any

additional burden and avoided the appearance of the exercise as a summative process.  At a

group level, the available performance data allowed optimisation of the class workload, giving

an overall indication of whether the group had as a whole completed the previous session's

work. It enabled simple visual identification of particular tests that were failing across the

group and also particular students who may be experiencing difficulties. The initial time

investment in developing the tabulation and analysis scripting was definitely judged to be

beneficial.

 

Contrary to inital fears, the introduction of automated testing did not cause too many technical

issues. This good fortune seemed largely attributable to the adoption of the Maven project

build tool, which offered an easy way to identically build and test Java code regardless of

operating system or development environment.  However, this tool was in many ways

unnoticeable by students since most of its other features apart than integration automated

testing were not discussed.  By comparison, the Git version control system caused many more

problems and resultant queries, yet these were still very manageable.

 

3.4 Lab performance tracking results

Summary data from nine laboratory sessions are presented in Table 1. Taking the official
enrolment count as canonical, n = 15
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Lab      Submission rate (%)      Mean pass rate (%)                    All pass (%)

 

1                                  93                                 61                                27

2                                 100                              100                              100

3                                 100                               88                                 13

4                                  93                                100                               93

5                                  13                                 45                                 0

6                                  67                                 70                                 33

7                                  67                                 68                                 20

8                                  80                                 73                                 0

9                                 100                               100                              100

 

Table 1: Lab performance tracking metrics (n=15)
 

Given the small sample size and variable number and difficulty of tests in each tracked lab

exercise, there are few global features readily identifiable from the presented data.  Lab~5

was somewhat anomalous, since it was the first lab that introduced client/server programming,

and unforeseen circumstances resulted in many students not being able to complete this

session. session, causing a zero ``All pass'' rate.  Students were advised to skip the offending

test by simply annotating it for exclusion, but some did submit it as failing.

 

4.  Discussion

 

The aim of this study was to evaluate the effects on student learning of adopting test-driven

development as a signature pedagogy within an applied programming module. Laboratory

exercises were augmented with lecturer-written automated test cases to provide formative

feedback to students whilst coding. A primarily qualitative examination of its effects was

undertaken utilizing learner input and practitioner reflection, with illustration from quantitative

performance metrics. Independent inductive thematic analyses identified three key benefits of

this signature pedagogy, completion, facilitation of discussion and the use of vernacular tools.
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There was a clear concurrence amongst the student and practitioner views that the use of

automated testing promoted completion.   The lecturer-written tests did not require test

composition on the part of the student, in contrast to other reported studies (Wick et al, 2005,

Girard and Wellimgton, 2006, Edwards,2003).  Instead, the tests objectively assessed the

functionality to be delivered (Nicol and Mac Farlane, 2006), enabling self-regulation. The

students identified positive motivational beliefs' being engendered by visually seeing the

results of checking their code against the tests whilst working. The results would therefore

suggest that the adopted approach improved laboratory completion and achievement in this

group.

 

It was expressed in the focus group that students might welcome more challenging, or indeed

optional tests. However, the literature would suggest that automated tests should rarely, if

ever, be optional in industrial settings.  In particular, testing theory states that the normal state

of a system should be that all tests pass (Humble and Farley, 2011). This avoids the so-called

``broken window syndrome'' where failure of the suite as a whole becomes normal.  There is,

however, scope to improve exercises by perhaps giving the opportunity for students to derive

new automated test cases by example.

 

Practitioner and student views both cited testing as an aid to problem resolution, noting that a

student could articulate their difficulties in terms of a failing test.  Targeted self-diagnosis as

well as discussion with peers and staff was better informed through identification of the

particular functionality that was lacking, and the conditions under which failures occurred.

 However, this key contribution depends on lecturer-supplied tests to ensure commonality, and

a lightweight toolset that promotes frequent test usage, differing from other reported studies

that emphasized test composition (Wick et al, 2005, Edwards, 2003).

 

Both student input and practitioner reflection cited the provision of a common stating project

as a key facilitator of discussion amongst students themselves.  This was particular relevant,

given that students used various different development environments and operating systems

in their coding activities.  The availablility of software project management tools such as

Maven, which transparently integrates automated testing, was a key enabler in this process.

 

The issue of alignment between in-class practice and continuous assessments was

highlighted within the focus group.   Constructive alignment theory would suggest that there

be a visible alignment between class practice and assessment activities (Biggs,1999).  Whilst



AISHE-J Volume 9, Number 2 (Summer 2017) 30226

this does not mandate that every assessment is accompanied by automated tests, the

rationale for their provision or non-provision may require clearer explanation.

 

Although the Java programming language includes a high degree of support for automated

testing, the pedagogical methods explored do not depend on the particular technologies

employed in this case study.  Automated testing is routinely employed when other

programming in other languages, such as C++, Python and C\#.  Opportunities exist to extend

the use of formative automated testing to programming exercises in non-computing

disciplines, such as engineering computation, quantitative finance and theoretical science

subjects, where numerical programming environments such as SciLab (Scilab-enterprises,

2012), Octave (Eaton et al, 2008) and R (R Core Team 2014) are regularly employed.

 

As presented, this study contains a number of direct limitations in both the intervention and

evaluation methodologies.  By its nature, the subject matter in the Web Frameworks module

lent itself to examination by automated tests.  More generally, this may present problems with

certain interactive software that students commonly are asked to build.  However, solutions

have been proposed in the education literature regarding programs that use keyboard

interaction (Proulx and Rasala, 2004,java} and graphical user interfaces (Thornton et al,

2008). 

 

Although the tests do positively assess required functionality, they neither measure nor

discourage the development of unrequested code.  Assessment of code coverage by tests as

a proxy for code-on-task may be helpful, as recognized industrially  (Tahchiev, 2011). There

are a number of free industrial code coverage tools that can be easily integrated into Java

projects using the Maven builder.  Students would require a reasonably brief tutorial in

interpretation of code-coverage results to maximise its benefit.

 

A key auxiliary output was the development of a program to tabulate test passes per student

and aggregate statistics.   This proved to be a key aid to the lecturer, by providing information

to inform teaching, a key requirement of quality feedback (Nicol and MacFarlane, 2006). The

interface design and reporting are rather basic and require further development.   Although not

overly onerous, the possibility exists to replace Moodle submission by developing new Maven

plugins to automatically submit test results in real time without student intervention. Such a

facility would allow the lecturer to view test results in real time during the lab session, and

would offer a major complementary advance on educational software testing tools (Pullan et
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al, 2013, Edwards, 2003).  

There were additionally some limiting factors in the evaluation methodology that require brief

consideration. The principal consideration relates to the sample size of 15, and caution

against undue generalizations must be maintained (Cohen et al, 2007).  Also, as both the

small sample size and ethical considerations prevented the formation of an otherwise-

comparable control group, there is a lack of contemporaneous comparison.  These limitations

were partly due to the time-bound nature of the study, which was performed as part of the

author's studies towards the MA in Learning and Teaching.

 

Whilst the results of this study provide a certain level of support for the use of formative test-

driven development as a signature pedagogy in computer programming laboratories, it cannot

unconditionally recommend the implemented approach.  Further trials of the developed

pedagogical method on larger student cohorts in both the university and Institute of

Technology sectors may provide additional insight. The evaluation presented occurred in an

entirely face-to-face setting, and a similar evaluation in fully online or blended delivery modes

may yield useful additional insight.  Many programmes now incorporate an industrial work

placement, and the effectiveness of classroom-based test-driven development might vary

depending on whether the student has yet completed their placement.  Similarly, the suitability

of the employed teaching methods in emerging apprenticeship-based software development

programmes remains untested.

 

5. Conclusion

 

This study describes the adoption of test-driven development as a signature pedagogy in

applied programming practicals.  Lecturer-supplied automated test cases were used as a

formative assessment tool to supply specific rapid feedback on-demand to students

completing laboratory work. This intervention was achieved using only free industry-standard

software testing tools that the students already had access to.

 

The efficacy of the test-driven signature pedagogy was deemed successful within its delivered

context by learners in a qualitative study.  Students positively identified the instantaneous

nature of the feedback and the continuing motivation to close the gap between actual and

desired performance.
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The ability to explicitly identify the test failing opened up peer discussion and increased the

quality of the dialogue between peers and with the lecturer. The lecturer noted that the self-

diagnosis provided to students by the automated tests permitted a more targeted level of

assistance from the lecturer during the limited lab time available.

 

Developed artifacts included basic scripting to collate reports from in-lab test runs to guide

lecturer assistance in subsequent sessions. Future technical work includes provision of real-

time visibility of test pass/fail status to the lecturer.  The applicability of the employed teaching

methods in larger groups sizes, different institutional contexts and varied learning modes also

remains to be investigated.  Opportunities also exist to apply elements of the described

pedagogical practice within other disciplines such as engineering, quantitative finance and

theoretical sciences.
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Appendix A   Focus group questions 
 

The following questions were used to guide discussion in focus group sessions, 

 

 

1.     How, if at all, was your approach to a given problem in the lab influenced by the provision of
automated tests?

 

2.     On average, how often did you run the test suite in full during the lab session? 

 

3.     Did you experience any technical impediments with the automated testing process? If so,
what were they? 

 

4.     How would you rate the quantity of tests for each lab exercise, would you have preferred
significantly more or less? 

 

5.     What changes did the provision of automated tests make to your interactions with other
peers and or staff in the lab? 

 

6.     What inhibitions did the use of automated testing place on you in the lab?

7.     Were you in any way hindered / limited in your work by their presence?

 

8.     Was your ability to complete the lab session within the alloted class time influenced any way
by the use of the automated tests? 

 

9.     Did your approach to coding outside of the lab environment change as a result of this
intervention? 

 

10.  If this module were to be delivered a second time using the same method, what changes
would you make? 

 


